
INCOMPLEX ALTERNATIVES TO MIXED BUNDLING∗

Chenghuan Sean Chu Phillip Leslie

Stanford University Stanford University & NBER

Alan Sorensen

Stanford University & NBER

May, 2006

∗Yes, “incomplex” is a word. We looked it up. We are grateful to Amitay Alter for research assistance, and
to TheatreWorks for providing the data. Thanks also to Lanier Benkard, Garth Saloner and Andy Skrzypacz for
helpful discussions.



1 Introduction

Under mixed bundling a firm that sells K products can set different prices for all (2K−1) bundled

combinations of its products. For two products there are three possible prices: two component

prices and a price for the bundle of both products. For five products there are 31 possible prices,

and for 10 products there are 1,023 possible prices. Perhaps unsurprisingly, observed pricing

strategies of multiproduct firms tend to be much simpler than what is theoretically possible.

In this study we examine the profitability of incomplex alternatives to mixed bundling, which

have the benefit of being much simpler to implement in practice. We show that incomplex

alternatives often yield profits within a few percentage points of mixed bundling. Hence, small

computational or menu costs may explain the prevalence of these simplified pricing schemes.

We study the relative profitability of five alternative pricing strategies for a multiproduct

monopolist with K products.1 Mixed bundling (MB), as described above. Pure bundling (PB)

in which the firm offers only the full bundle of K products at a single price. Uniform pricing

(UP) in which the firm sets a single price which is the same for all products and there is no

bundling. Component pricing (CP) in which the firm sets a different price for each product and

there is no bundling. Lastly, we introduce an alternative pricing strategy that has not previously

been discussed in the bundling literature: quantity discounts (QD) in which prices depend only

on the number of products in the bundle.2 In other words, under QD all bundles that contain

the same number of products have the same price, but prices may vary for bundles of different

sizes.

The bundling literature has focused on the relative profitability of CP, PB and MB. Of

course MB always yields weakly higher profits than any the above alternative schemes, because

each alternative is a restricted version of MB. More importantly, McAfee, McMillan and Whin-

ston (1989) show that MB strictly dominates CP under rather general circumstances. But for

firms with more than a few products, determing optimal prices under MB is a difficult problem—

we can’t even compute optimal MB prices for a firm that has more than 6 products with any

reasonable degree of accuracy. This naturally leads to the question of how well do incomplex

alternatives perform? One extreme is to consider pricing strategies with a single price: PB and

UP. In fact Armstrong (1999) and Bakos and Brynjolfsson (1999) show that with zero marginal

cost PB is equivalent to MB as the number of goods approaches infinity.3 It is possible that PB
1As in the bundling literature, we assume there are no demand-side or supply-side complementarities that may

also benefit bundling.
2We apply the assumption used throughout the bundling literature: individual consumers purchase at most

one unit of each product, but can purchase any number of products.
3Fang and Norman (2006) compare the profitability of PB and UP when the number of products is relatively
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may also perform well for a finite number of goods. But in this case it is conceivable that CP

or QD, with the same number of prices as there are products, may do better than either PB or

UP, and may even do well relative to MB.

Our goal is to characterize the circumstances under which each incomplex alternative yields

profits close to that of MB. When is it more profitable to implement PB, CP or QD, and when is

this a good approximation to MB? We focus on two aspects in our characterization: the number

of products (K), and the joint distribution of consumers’ tastes for these products. We find that

...

We also include an empirical example in the second part of the paper. The data come from

a regional theatre company with an eight-play season. The firm currently offers three prices: a

uniform price for each play, a discount for seeing any five plays, and a discount for the bundle

of all eight plays. Importantly, we observe which five plays each consumer chooses under the

five-play option. This allows us to identify the covariances in the joint distribution of consumers’

tastes, which is a key determinant of profitability under alternative pricing schemes. We estimate

a flexible demand system and then compute profits under counterfactual pricing strategies.

The example illustrates the kind of data needed to measure the profitability of MB. We also

propose a novel demand specification that is well-suited to computing profits under the different

pricing strategies. We find that ...

The remainder of the paper is organized as follows. In Section 2 we summarize the relevant

prior literature. Section 3 contains our theoretical analysis of the various pricing strategies. The

empirical example is presented in Section 4. Section 5 is the conclusion.

2 Prior Theoretical Literature

The bundling literature explores the idea that a multi-product monopolist can increase profits by

selling goods in bundles, even when there are no demand-side complementarities or supply-side

economies of scope. If a firm sells two products, and consumers vary in their willingness-to-pay

for each product, then Stigler (1963) shows by example that selling these two products as a

bundle (PB) may yield higher profit than if sold separately (CP). Adams and Yellen (1976)

compare CP, PB and MB. They argue that the effectiveness for each these pricing strategies to

small. They show that either may dominate the other, depending on the underlying demand system.
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enhance profit depends on the degree to which each satisfies the following conditions.4 Complete

extraction: no individual realizes any consumer surplus on his purchases. Exclusion: no indi-

vidual consumes a good if the cost of that good exceeds his reservation price for it. Inclusion:

any individual whose reservation price for a good exceeds its cost in fact consumes that good.

As Adams and Yellen note, these conditions are met by perfect price discrimination, which

defines the maximum possible profit. Roughly speaking, CP is more likely to violate inclusion

and PB is more likely to violate exclusion. MB provides the flexibility to optimally trade-off

violations of inclusion and exclusion.5 Adams and Yellen also argue that the greater the elasticity

of demand for the bundled product, the less likely that PB violates exclusion or inclusion.

The analysis of Adams and Yellen is based upon judiciously chosen numerical examples. Two

subsequent papers show that bundling (PB or MB) dominates CP in a wide variety of circum-

stances. First, Schmalensee (1984) expands the analysis to demand systems where consumers

obtain product valuations from a bivariate normal.6 Due to the limited computer power at the

time, Schmalensee does not compute optimal MB prices, instead focusing on CP and PB. His

main finding is that PB can be more profitable than CP even when the correlation of consumers’

valuations is non-negative.7 Second, McAfee, McMillan and Whinston (1989) extend the prior

results by showing that MB strictly dominates CP under rather general circumstances.8

All the above papers analyze two product monopoly problems. A few prior papers study

bundling with more than two goods. Bakos and Brynjolfsson (1999) focus on the profitability

of PB as the number of goods (K) goes to infinity. They show that if goods have zero marginal

cost, then as K goes to infinity PB approximates perfect price discrimination.9 This finding is

particularly interesting in our context, since it provides an example of an incomplex alternative

to MB that closely approximates the profitability of MB in certain circumstances (i.e., large K).
4We restate their conditions verbatim. See Adams and Yellen (1976), page 481.
5Adams and Yellen (1976) also show that bundling may either increase or decrease social welfare relative to

CP.
6A concern with this approach is that the bivariate normal implies negative valuations for some consumers

which would impact the analysis in non-trivial ways, as noted by Salinger (1995). In all of the analysis in our
study we allow for free disposal.

7The numerical examples in Stigler (1963) and Adams and Yellen (1976) somehow suggest the importance of
negative correlation, as noted by Schmalensee (1984).

8McAfee, McMillan and Whinston (1989) also distinguish between firms that can monitor purchases or not.
With monitoring, the firm can charge a price for the bundle of two that is higher than the sum of component
prices. We limit our analysis to the no-monitoring case.

9As already noted, the assumption of zero marginal cost rules out violations of the exclusion criteria. Bakos
and Brynjolfsson (1999) also show that, under certain conditions, increasing the number of goods under PB, mono-
tonically increases profit. Geng, Stinchcombe and Whinston (2005) extend the analysis of Bakos and Brynjolfsson
to incorporate diminishing marginal utility.
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Armstrong (1999) provides a more general but similar result to Bakos and Brynjolfsson (1999).

Armstrong shows that a two-part tariff, in which consumers are charged a fixed fee and can then

purchase any products at marginal cost, achieves approximately the same profit as perfect price

discrimination if the number of the products approaches infinity. In the special case of zero

marginal cost the two-part tariff is equvalent to PB. The focus on settings with large numbers of

products may be quite relevant for some firms, such as booksellers or supermarkets. But clearly

these results are of questionable relevance to firms with 5 products, say.

Fang and Norman (2006) also examine the profitability of PB with more than two goods. In

contrast to Armstrong (1999) and Bakos and Brynjolfsson (1999) they focus on finite K, and

they seek to determine under what circumstances is PB an attractive pricing strategy. They

confirm the prior intuition that increasing marginal cost tends to favor CP over PB. Fang and

Norman also use numerical simulations to show that increasing the number of goods may favor

PB over UP. We discuss their simulations in more detail below.

Spence (1980) and Hanson and Martin (1990) propose methods for computing optimal MB

prices for K ≥ 2 goods. Both papers assume a finite number of consumer types (defined as

combinations of valuations for the K products). Naturally, the computational burden increases

with both the number of goods and the number of consumer types. However, it is important

to allow for a high degree of consumer heterogeneity, since one of the key benefits to bundling

is heterogeneity reduction. If there is limited heterogeneity in the first instance, any pricing

strategy that exploits heterogeneity reduction (MB, PB and QD) will have limited impact on

profitability. Also, neither of these papers considers the relative profitability of CP and MB,

and neither mentions QD.

To summarize the relevant prior results about monopoly bundling: MB yields strictly higher

profits than CP or PB in a wide range of circumstances, but if the number of products is large

and there is zero marginal cost then PB obtains approximately the same profit as MB.

The focus on two good examples in the prior literature makes a lot of sense. It is surely

the case that the results of McAfee, McMillan and Whinston (1989) would generalize to K > 2

goods. Our starting point is that solving for optimal MB prices is a highly complex problem

even for relatively small number of products. Furthermore, while it is possible to analyze the

relative profitability of UP, PB, CP, QD, and MB in a two good setting, our claim is that the

relative profits systematically depend on K. Hence, in evaluating the appeal of these incomplex

alternatives, it is particularly important to analyze examples with K > 2.
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Lastly, previous authors have offered various explanations for real-world firms’ apparent lack

of sophistication in pricing strategies. Blinder Canetti, Lebow and Rudd (1998) and Kahneman,

Knetsch and Thaler (1986) discuss the possibility that firms avoid complex pricing schemes be-

cause consumers perceive such schemes to be unfair. Metrick and Zeckhauser (1999) propose

that firms in some instances may be concerned that differential prices will be perceived by con-

sumers as quality signals, discouraging demand for the lower-priced products. McMillan (2005)

considers the possibility that menu costs alone can explain why firms implement UP instead of

CP in some circumstances.

3 The Multiproduct Pricing Problem

In principle, multiproduct firms can employ a wide variety of pricing schemes. For a firm with

K products, the optimal MB strategy requires setting (2K − 1) prices.10 PB and UP require

only one price to be set: the price for the bundle of all K products (in the PB case), or the

per-product price (in the UP case). In between these extremes are CP, by which we mean

setting K different prices for the K different products, and QD, by which we mean setting K

prices that depend on the number of products purchased. Note that MB nests all the simpler

pricing strategies as special cases, so it will always be weakly more profitable than any of these

alternatives. Similarly, CP nests UP as a special case, and QD nests both UP and PB as special

cases. CP and QD are non-nested alternatives.

In practice, multiproduct firms tend to use a wide variety of different pricing/bundling

strategies. Consider baseball teams, for example, which have 81 home games (products).11 For

the 2006 season, the Los Angeles Dodgers offer several bundles of specific games, a discount for

choosing any 27 games, and equal prices for all individual games. In contrast, for 2006 the San

Francisco Giants do not offer any bundles or quantity discounts, but the Giants do vary prices

by day of week and by opponent. Variation in pricing strategies is also evident in settings with

fewer products. Consider the Steppenwolf Theatre in Chicago that produces a 5-play season.

In 2006-07, they offer a discount for the 5-play bundle at a variety of prices that vary by time-

of-week, and equal prices for individual shows (also varying by time-of-week). In 2006-07 the

San Francisco Opera has a 10-opera season and offers 37 bundles (combinations of specific operas

and time-of-week), and equal prices for individual shows (also varying by time-of-week). These

examples highlight the dramatic differences in pricing strategies implemented by different firms

in similar settings. We have been unable to find an example of MB being used in practice.
10We subtract 1 because the firm does not set the price for the outside good.
11Under MB, with 81 products a firm would choose 2.4× 1024 prices.
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CP and QD are of particular interest because the number of prices equals the number of

products, which is a reasonable benchmark for practical pricing strategies. However, there are

many other potential pricing strategies that also involve K prices, which are arbitrary subsets

of MB. The problem in these cases is that it is ex-ante unclear which subset of K prices to

choose. Ideally, a firm would compute the profits from all possible combinations that involve

K prices, then implement the profit maximizing combination. This burdensome complication

could be avoided if we knew in advance the circumstances under which each combination closely

approximates the profitability of MB. As a starting point, we examine the circumstances under

which QD is more profitable than CP, and to determine whether either of these strategies can

be expected to yield profits “close” to the fully optimal MB profits.

In our analysis we focus on settings with zero marginal cost. This is not innocuous. Prior

authors have shown that increasing marginal costs tend to reduce or eliminate the benefit of

MB relative to CP.12 The reason for this focus is partly because we include an empirical exam-

ple which happens to have zero marginal cost, and partly because it simplifies the analysis.13

Nevertheless, with zero marginal cost it is still possible for CP to dominate QD, or the reverse,

and it is interesting to investigate the circumstances under which each strategy is preferred by

firms. Examples of products for which bundling is relevant, and which may have zero marginal

cost, include information goods, cable television, music, software, sports teams, and performing

arts organizations.

Ideally, one would like to answer such questions with analytic solutions derived from a general

model of demand. There are at least two obstacles to such an approach. First, as K increases,

the region of integration becomes highly complex. Second, an important determinant to the

profitability of bundling is the covariance of consumers’ tastes for the K products. We are

unaware of distributions with analytic integrals that allow for non-zero covariance (even if the

regions of integration are simple). We therefore begin by offering a heuristic analysis of QD and

CP in a two-good model with general demand, and then follow Schmalensee’s (1984) approach

by relying on numerical analysis of a specific demand model designed to capture the key features

of the problem. Obviously, the results of our numerical exercises cannot be guaranteed to extend

beyond the class of examples we consider. However, our setup captures the essential advantages

and disadvantages of the alternative pricing strategies, and we suspect the patterns that emerge

would hold in a much broader class of models

The analysis proceeds in two stages. First, we identify features of demand that favor QD
12With zero marginal cost, the exclusion condition is never violated. Consequently, on the benefits to CP is

suppressed. See Fang and Norman (2006).
13In the theoretical analysis we also explore how increasing marginal cost may impact our findings.

6



or PB and features that favor CP, for a given number of products. Second, we analyze how

increasing the number of products affects the profitability of CP, QD and PB.

3.1 Profitability of Different Pricing Strategies with Two-Goods

A useful starting point for identifying the features of demand that favor different pricing strate-

gies is to examine a two-good setting. Even with only two goods, the five pricing schemes we

consider differ meaningfully from each other. In order to build intuition about the factors that

determine their relative profitability, we analyze a very simple setup with discrete consumer

types. The firm sells two goods, both at zero marginal cost, to consumers whose valuations for

each good can be either 1, 2, or 3. The optimal pricing strategy depends on the composition of

consumer types, which can be depicted by plotting consumers in a 3×3 grid.

Figure 1 shows six examples, where in each case we illustrate a different composition of 9

consumers across the 9 consumer types, and above each grid we list a rank ordering of pricing

strategies. In Example A, consumers’ valuations for the two products are perfectly negatively

correlated. This example illustrates the canonical rationale for bundling: while the consumers’

valuations for the individual goods are heterogeneous (between 1 and 3), their valuations for the

bundle of both goods are completely homogeneous (i.e., 4). The implication is that bundle pricing

(via MB, QD, or PB) can extract all the surplus, while CP and UP cannot. Example B shows

the opposite extreme, where consumers valuations are perfectly positively correlated. In this

example, all of the pricing strategies we consider are equivalent. Bundling confers no advantage

over uniform pricing because it does nothing to reduce heterogeneity in willingness to pay, and

component pricing confers no advantage because demand for the two goods is symmetric.14

While negatively correlated tastes favor bundling strategies like PB and QD, asymmetry

in demand favors CP. Example C shows that even with perfect negative correlation in tastes,

CP can be more profitable than QD if the products’ demands are asymmetric enough. In this

example, PB and QD are equivalent: both involve selling the bundle to the (v1 = 1, v2 = 3) types

for a price of 4, but selling nothing to the (v1 = 2, v2 = 1) types. QD does not outperform PB

because the additional single-good price is of no use: any single-good price that induces purchase

by the (v1 = 2, v2 = 1) types would not be incentive compatible with the (v1 = 1, v2 = 3) types

purchasing the bundle. In contrast, by setting component prices of 1 and 3, CP extracts all the

surplus from the high types (like PB and QD), but without abandoning the low types altogether.
14Note that it doesn’t matter how we distribute consumers along the “diagonal” of the grid: for example, if

there were 5, 3, and 1 consumers along the diagonal instead of 3, 3, and 3, the pricing strategies would still all be
equivalent.
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(The (v1 = 2, v2 = 1) types purchase good 1.) Note that conditional on having only these two

types of consumers, CP is more profitable than QD only if a large fraction of consumers are

the (1,3) type. As shown in Example D, reversing the weighting of consumer types also reverses

the profitability ranking of CP and QD. In Example D, QD sells the bundle to all consumers at

a price of 3, while CP sets prices of 2 and 1 and leaves more surplus to the high types.

Both Examples C and D exhibit demand asymmetry in some sense. And in both cases,

demand is perfectly negatively correlated. But in one case CP beats QD, and in the other case

QD beats CP. One way to describe the difference between these two examples is that demand

is “top-heavy” in Example C. That is to say, there is a high concentration of consumers with a

high valuation for one of the products. In the next subsection we propose a summary measure

of “top-heavy asymmetry”, and we show that this is an important determinant of profitability

under CP.

The equivalence of PB and QD in the first four examples is not surprising, because bundling

is the main purpose of both. In principle, however, QD should have an advantage over PB:

the additional flexibility to set a one-good price allows QD to capture surplus from consumers

with a high valuation for one good but a relatively low valuation for the bundle. The demand

configuration shown in Example E illustrates this advantage. In this configuration, PB sells the

bundle to all types at a price of 4. QD does better by selling the bundle for a price of 5 and

single goods for a price of 3, which extracts the full surplus of the seven high types while still

inducing purchase by the (v1 = 1, v2 = 3) types.15 Nevertheless, in this example QD is less

profitable than CP, which extracts almost all of the potential surplus with component prices

of 2 and 3. Example F shows a five-type configuration where QD is strictly more profitable than

both PB and CP.

Notice that in all but one of the six examples shown in Figure 1, the three-price mixed

bundling outcome can be achieved with a simpler two-price alternative. In fact, of the 24,310

possible configurations of 9 consumers into this 3×3 grid, MB is strictly more profitable than

both CP and QD in only 2,890 cases. Interestingly, the average difference in profit (over all

possible configurations) between MB and QD is 0.56, while the average difference between MB

and CP is 1.85.16 Moreover, MB profits never exceed QD profits by more than 4, but can exceed

CP profits by as much as 14. Similarly, when CP is preferred to QD, the profit difference is

typically small (never more than 4), but when QD is preferred to CP the difference can be large
15For simplicity we assume that if a single-good purchase and a bundle purchase deliver the same utility, the

consumer will purchase the bundle. We could instead say the QD prices are 3 and 5-ε to get the same outcome.
16For reference, total profits are at least 18 and at most 54 in this setup.

8



(as much as 14).17

3.2 The Importance of Correlation and Asymmetry

The examples in Figure 1 suggest that: (i) negative correlation is good for bundling (PB, QD

and MB); and (ii) asymmetry of a particular kind is good for CP. In this subsection we provide

a more formal analysis of the role of correlation and asymmetry in our 3×3 framework with two

goods.

A benefit of examples with two goods is that the correlation in tastes between the two goods

provides an obvious summary of correlation.18 Again using our simple setup with 9 possible

consumer types, we compute the correlation in tastes for each of the 24,310 possible demand

configurations. Figure 2 shows the average profitability of MB, QD and CP as a function of

demand correlation.19 To construct this figure, we compute the average profit under each pricing

regime for each decile of the distribution of the correlation coefficient. Hence, for any given level

of correlation, there is variance in the profitability of each pricing strategy, and we depict only

the mean.

Figure 2 shows an interesting pattern that emerges even from this simple setup. The average

profitability of QD and MB is highly dependent on the degree of negative correlation. The figure

also verifies that bundling may still dominate CP even with positive correlation, as previously

shown by Schmalensee (1984). Correlation, at least according to this measure, is not the only

determinant of the profitability of MB and QD. But the figure suggests that correlation is a

primary determinant of the profitability of MB and QD.

In contrast to QD, Figure 2 shows that the profitability of CP is roughly invariant to changes

in correlation. The reason is because profitability under CP depends only on the marginal distri-

butions of consumers’ valuations for each product. In other words, the firm’s profit maximization

problem is equivalent to K separate individual profit maximization problems. There is no addi-

tional benefit to jointly solving the K optimal prices. Hence, correlation in tastes across products

is irrelevant to CP.
17Note that we consider all 24,310 possible configurations of 9 consumers, even though some of these are

redundant due to the symmetry of our setup. The above statements still hold even if we do not double-count
symmetric cases.

18For three or more goods the correlations between all possible pairs needs to somehow be aggregated.
19Note that profits are normalized by the total surplus, since the total surplus varies across the 24,310 demand

configurations.
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What factors affect the profitability of CP? As noted above, Examples C and D suggest a

particular form of demand asymmetry favors CP: asymmetry that is “top-heavy”. We propose a

measure of the degree to which there is top-heavy demand asymmetry, allowing us to distinguish

demand systems “like” Example C from demand systems “like” Example D. Define nj(v) as the

number of consumers whose for value good j equals v. The total surplus for good j is defined

as sj =
∑3

v=1 nj(v)v. Our proposed measure of asymmetry is given by

Λ = w1

3∑
v=1

[
n1(v)v

s1

]2

+ w2

3∑
v=1

[
n2(v)v

s1

]2

,

where wj = sj/(s1 +s2), the relative importance of each good to total surplus. Note that n1(v)v

equals the surplus for good 1 that is attributable to consumers whose value for good 1 is equal

to v. Hence, Λ is a weighted sum of the surplus attributable to each product for each possible

consumer valuation.

Λ is higher the more concentrated is demand in one product at a high value. Λ is lowered by:

(i) similarity in demand (symmetry in the extreme) across products; (ii) variance in valuations

for a given product; and (iii) concentration in demand for a given product at low values. As an

illustration, in Example C we obtain a value of Λ = 0.74, and in Example D we obtain Λ = 0.66.

Hence, Example C exhibits greater top-heavy asymmetry than Example D.

Figure 3 is the analog to Figure 2 based on our measure of asymmetry instead of correlation.

In this case the profitability of all three pricing strategies is increasing in Λ. It would be ideal to

construct a measure that is correlated with the profits of CP and uncorrelated with the profits of

QD and MB. While this measure does not do that, it is nevertheless correlated with the relative

profitability of CP and QD or MB. As asymmetry increases, CP does better relative to QD, and

for high enough asymmetry CP is more profitable than QD.

The appeal of Λ is that it captures the notion of top-heavy asymmetry. To emphasize the

importance of the top-heavy aspect of this characterization, we compare the performance of Λ

to a couple of obvious alternatives that measure asymmetry without taking into account “top-

heaviness”. One alternative is to measure asymmetry in demand by the difference in mean

valuations of the two products. A second alternative is the maximum surplus of a single good as

a fraction of the total surplus of the two goods. The performance of Λ is compared with these

two alternatives in Figure 4. The metric for comparison is the profitability of CP relative to

QD. A useful measure of asymmetry would identify when CP does well relative to QD. Figure 4

shows that both alternatives are also positively correlated with the profitability of CP. But it is

clear that Λ is more informative. For example, Λ is the measure that identifies demand systems

for which CP obtains higher profit than QD, in these experiments.
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3.3 Numerical Analyses for K ≥ 2

Comparing the profitability of alternative pricing strategies is impossible without making specific

assumptions about consumer demand (i.e., the probability distribution of consumers’ willingness

to pay), and the setup described in the previous section is just one with particularly stark

assumptions. Although that setup offers some useful insights, we want to understand how

the pricing strategies perform in more general settings. Ideally we want to allow for richer

heterogeneity in consumer types, and we especially want to know what happens as the number

of goods increases. Unfortunately, even after specifying a probability distribution, the optimal

prices and profits under the various pricing strategies typically cannot be obtained in closed

form, because calculating the demand for a bundle of two or more products involves integrating

probability distributions over non-rectangular regions.20 Our approach will therefore be to use

numerical analyses of a variety of demand specifications, with the idea that these analyses will

reveal patterns that might be expected to hold more generally.

As a starting point, consider a demand model in which consumer i’s utility from purchasing

bundle j is equal to V ′
i Dj−pj , where Vi is a K×1 vector of valuations for the firm’s K products,

Dj is a K × 1 vector of binary indicators for which of the K products are included in bundle

j, and pj is the price of bundle j.21 Each consumer’s problem is to choose the offered bundle

that maximizes her utility. Consumers’ product valuations are heterogeneous: Vi is drawn

from a (multivariate) distribution F . Given this setup, our goal in this section is to evaluate

the profitability of alternative pricing strategies for various distributions (F ) and for different

numbers of products (K).

Table 1 summarizes the simulated profit outcomes for a number of different distributional

assumptions. The first panel is the case with independent exponentials. Specifically, we perform

the following simulation exercise:

Step 1: Randomly draw the K products’ mean valuations from the uniform distribution: θk ∼
U [0, 1].

Step 2: Simulate the valuations of n consumers by taking independent draws from exponential
20An exception is the two-good case with exponentially distributed tastes; for that case, there are closed-form

solutions for the optimal prices and profits under CP, QD, and MB even though the regions of integration are
non-rectangular. The integrals are still analytic as you increase the number of goods, but the regions of integration
get very complex, so the solutions are quite messy.

21Note that by assuming additive preferences we are ruling out consumption complementarities as a motivation
for bundling. As with the bundling literature more generally, our focus is on the price discrimination motive. See
Crawford (2005) for a nice discussion of the various motives for bundling.
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distributions: vik ∼ Exp(θk).

Step 3: Given these consumer valuations, numerically calculate optimal prices and profits under

the various pricing strategies.

We repeat steps 1–3 many times and then summarize the outcomes. To calculate the optimal

prices and profits in step 3, we initially consider the case in which marginal costs are zero. We

consider simulations with positive marginal costs in the next subsection below.

Before summarizing the outcomes of these simulations, it is important to acknowledge the

obvious limitations of our approach. Although we attempt to cover a large space of parameter

values, the results clearly depend on how we define that parameter space and how we sample

from it. Further, there is no way for us to know whether we are under- or over-sampling the

relevant (i.e., empirically plausible) combinations of parameters. So, for example, when we

report “average” outcomes, these should certainly not be interpreted as outcomes that should

be expected in an empirical sense; they should be interpreted narrowly as the averages of the

outcomes we simulated.

4 An Empirical Example

The numerical simulations verify the importance of the joint distribution of consumers’ tastes

for the K products in determining the relative profitability of UP, PB, CP, QD and MB. In

this section we address the problem of how to estimate the joint distribution of consumers’

valuations from available data. In contrast to standard econometric models of demand, it is

important that such an approach allow for non-zero covariances in tastes, and the ability for

individuals to purchase multiple products. We estimate such a demand model using data from

a theatre company that offers an 8-play season. Based on these estimates, we compute the

profitability of each pricing strategy.

We also measure the impact of each pricing strategy on consumer welfare in this market.

This is interesting because bundling, like price discrimination more generally, has ambiguous

affects on consumer welfare relative to uniform pricing.22 To the best of our knowledge, there

is only one prior empirical analysis of bundling. Crawford (2005) tests the hypothesis that

consumers’ demand for a bundle of cable channels becomes less heterogeneous as more channels
22See Leslie (2004) for a similar empirical analysis of the welfare effects of price discrimination, which also

happens to be in the context of theatre ticket pricing.
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are added to the bundle, which he finds to be the case. Based on a calibrated demand model,

Crawford argues that adding a top-15 cable channel to a bundle and re-optimizing prices leads

to 5.5% lower consumer surplus, and 6.0% higher profit.

In the following subsections we summarize the data, present the demand model, and then

implement the estimation and counterfactual pricing experiments.

4.1 Data Summary

The data for our empirical analysis come from TheatreWorks, a theatre company based in Palo

Alto, California. We observe all ticket sales for TheatreWorks’ 2003–2004 season, which consisted

of 229 performances of 8 different plays or musicals. Table 2 provides summary information for

each of the 8 plays.

Consumers may purchase tickets to individual plays at a uniform price. TheatreWorks also

offers three subscription packages: (i) the full 8-play season; (ii) any combination of 5 plays; or

(iii) a pre-specified bundle of 3 plays.23 These subscriptions were offered at discounted prices,

in the sense that the per-play price was significantly lower for subscriptions than for ordinary

box office sales for individual plays. Table 3 summarizes the purchase options and their average

prices.24

As shown in the table, a substantial portion of total ticket sales came through subscriptions.

A total of 103,078 tickets were sold to the eight plays. Of these, 88,833 were tickets purchased

as part of a subscription package. There were 6,101 buyers of the 8-play bundle, 2,794 buyers

of a 5-play bundle, and 245 buyers of the 3-play bundle. The data is rich enough that we also

observe non-subscribers that buy tickets to multiple plays. In this case, we observe 8,131 buyers

of a single play, 1,409 buyers of two plays, 555 buyers of three plays (different to the pre-set

bundle of three) and 224 buyers of four plays.

The popularity of the flexible 5-play subscription is a particularly important feature of the

data. Observing which five plays these subscribers’ selected allows us to identify the covariance

of tastes across plays—e.g., if we observe that two plays tend to be included disproportionately

often in the five-play combination, we know that tastes for those two plays are positively corre-
23The pre-specified bundle consisted of the only 3 plays that were performed at TheatreWorks’ secondary venue,

a smaller theater in Palo Alto, CA.
24In fact prices also vary by time-of-week (but not by play). We therefore report simple (unweighted) averages

of these prices. Note also, prices do not vary by seat quality. This is because the venues are small enough that
the variation in seat quality is fairly minor.
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lated. Conversely, if another pair of plays is rarely included in the same bundle, we can infer that

tastes for those two plays are negatively correlated. Table 4 summarizes the correlations implied

by the pick-five purchases: it reports the difference between the empirical correlations of the

choices and the correlations that would be expected if tastes were independent.25 The patterns

make intuitive sense. For example, tastes for Bat Boy, described in the brochure as a “wacky

new musical,” are positively correlated with tastes for Memphis, described as a “rafter-rattling

musical comedy.” Conversely, tastes for Bat Boy are negatively correlated with All My Sons, a

classic Arthur Miller drama billed as an “intense, compelling tale of love, greed, and personal

responsibility.”

The set of products for each consumer to pick from includes each individual play, the preset

bundle of three, the full bundle of eight, and 56 possible combinations of five plays. However,

an individual consumer may create other bundles by adding individual plays. For example, a

consumer can bundle any four plays, although there is no discount for doing so. Or a consumer

can purchase a bundle of five, and add a sixth play at the regular single play price. Defining

products to include every conceivable bundle implies 255 choices. In fact we observe zero sales of

bundles of six or seven plays. We therefore ignore these combinations in the estimation. Hence,

we model the demand for 219 different bundles, plus an outside alternative, giving a total of

220 possible choices. Lastly, we note that capacity constraints are infreqently binding—27 of

the 229 performances were sold out—leading us to abstract from their impact in the estimation

and counterfactual analyses.

4.2 Empirical Model

The empirical specification is based on an underlying model of individual consumer utility max-

imization. The firm offers j = 1, ..., J − 1 bundles containing combinations of the k = 1, ...,K

products. There is also a J th option for consumers which is the outside alternative. We assume

the net utility to consumer i from option j is given by

uij =

 V ′
i Dj − αipj − βiqj : j = {1, ..., J}

0 : j = J

where V is an K×1 vector of valuations for the individual plays, Dj is an 8×1 vector of indicators

for whether each play in included in bundle j, pj is the price of the bundle, qj =
∑

k Dj(k) is the

quantity of plays in the bundle, and αi > 0 and βi > 0 are the individual’s sensitivity to price
25Since each consumer selected five plays of eight, the pairwise correlations will be nonzero even if tastes are

independent. The expected correlation if plays are chosen independently is -1/7.
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and quantity, respectively. As mentioned above, we estimate demand for 219 bundle options,

plus an outside alternative with zero utility for all consumers. Hence, in our notation J = 220.

Following the approach taken in the theoretical bundling literature, we assume there are no

demand-side complementarities from consuming particular plays together.26 However, we depart

from the standard utility function in the bundling literature in two ways that are important for

our empirical setting. First, we incorporate heterogeneity in consumers’ sensitivity to price.

Second, we allow for diminishing marginal utility, and we also allow consumer heterogeneity in

this parameter. In the next subsection we discuss the identification of these elements of the

model, and hence why they are important in our empirical setting.

Individual consumers are defined by their own combination of Vi, αi and βi. We estimate

the population distribution of each component, and we assume the following parametric distri-

butions:

V ∼ N (µv,Σv) ,

α ∼ LN (µα, σα) , and

β ∼ Exp (µβ) .

Note that V has support from −∞ to +∞. Hence, to incorporate free disposal, we assume

V (k) = max{V (k), 0}, ∀k. We also impose the restriction that the variance for each marginal

distribution of V equals one: Σv(k, k) = 1, ∀k. The reason is because the conditional means of V

appear not to be empirically separately identified from the covariances. We place no restrictions

on the 28 remaining covariance terms in Σv, or any of the other parameters in the model. We

therefore estimate 39 parameters. Let Θ denote the set of parameters to be estimated.

Let nj denote the observed number of consumers choosing option j. To determine the

number of consumers choosing the outside alternative, we assume a market size of 50,000.27 It

is impossible to know the correct market size, but this seems reasonable based on the population

of Palo Alto and the surrounding suburbs, and the fact that consumers of TheatreWorks’ shows

tend to be elderly.28

The model’s parameters are estimated via simulated maximum likelihood. We simulate the

probability of a consumer choosing each option. For a given set of parameters, Θ, we draw ns

26On the supply side, we will also assume zero marginal cost, which also precludes supply-side complementarities.
27We check robustness of our estimates to alternative values of market size.
28In 2000, the population of Palo Alto was 58,598. Two nearby suburbs are Mountain View (population 70,708)

and Los Altos (population 27,693). The combined population is 156,999, and we consider one third of this to be
a reasonable measure of the market of potential consumers (mainly elderly people).
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simulated consumers from the above distributions of consumer heterogeneity. For each simulated

consumer we compute the optimal bundle choice, implying predicted market shares for all 220

choices: sj , such that
∑J

j=1 sj = 1. The log-likelihood function is given by:

l(·,Θ) =
J∑

j=1

nj log sj(P,Θ),

where P is the (J−1)-dimensional vector of observed prices. The vector of estimated parameters

is the value of θ that maximizes the log-likelihood function.

As is well known, simulated maximum likelihood estimators are biased due to the convexity

of the log operator, but are consistent as long as the number of simulation draws (ns) scales up

in proportion to
√

N , the squareroot of the sample size. In practice, we try values of ns ranging

from 50,000 to 500,000.

Another problem is that when the number choices is large and mean utilities for different

choices are very different, a simple frequency simulator will often produce zero probabilities for

some choices, leading to an undefined log-likelihood. This problem could be mitigated using

advanced techniques for drawing from joint densities, such as Gibbs sampling or the Metropolis-

Hastings algorithm. We rely on a simpler method. If there exist choices such that sj(Θ, ·) = 0,

we simply remove a very small probability measure δ from the choices with sj > 0 (in proportion

to the shares of those elements) and redistribute it equally amongst the zero-share choices. The

resulting shares still sum to one and are all strictly positive.29

4.3 Identification

What variation in the data serves to identify each parameter of the demand model? The mean

terms in the joint distribution of consumers valuations, µv, are identified by the sales to indi-

vidual ticket buyers for each play. The covariance terms in the variance-covariance matrix of V ,

Σv, are identified mainly by the combinations of choices made by the pick-five buyers. These

subscribers reveal which plays consumers like putting together and which plays they don’t like

putting together. As noted above, we assume the variance terms in Σv all equal one.

Price variation in the data comes in the form of differences in per-play prices across bundles.

This variation serves to identify consumers’ mean sensitivity to price. A standard concern with

demand estimation is the possibility that observed prices are correlated with unobserved demand
29In practice, we take δ to be 10−10, and then remove a measure δsj from each non-zero choice.
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shifters, which may bias parameter estimates. However, in the estimation we integrate over all

unobserved demand components—there is no remaining error term that may be correlated with

observed prices. A consequence of this approach is that we rely on sampling error to explain

discrepencies between predicted and actual outcomes.30 This suggests adding an error term to

the demand model, to reduce the likelihood of rejecting the estimated model. But given the rich

specification of consumer heterogeneity that is already present in the model, it is unclear how

to interpret any additional unobserved demand component.

The empirical model includes two features that are non-standard in the utility functions that

appear in the theory literature on bundling: heterogeneity in price sensitivity, and diminishing

marginal utility. We include them because they help us to explain some important features of

the data.

First, recall from Table 3 that a large fraction of consumers choose the bundle of all eight

plays. Consumers that buy this bundle, have relatively high valuations for all eight plays, or at

least for most of the plays. To get a large number of consumers with high valuations for almost

all plays requires strong positive covariances in consumers’ valuations. However, this is at odds

with the large number of consumers that attend only one play. If a consumer has a high enough

valuation to attend one play, with strong positive correlations for all plays this consumer is likely

to have high valuations for many more plays. How can we explain so many single-play buyers?

To explain this pattern of sales, we introduce heterogeneity in the marginal utility of attend-

ing more than one play: βi. The higher is βi, the less likely a consumer will want to attend

multiple plays. This allows us to explain why a consumer would choose to attend one or few

plays, even though they may also have high gross valuations for other plays. Hence, given the

covariances that are identified from the pick-five buyers, the distribution of βi (i.e. µβ) is iden-

tified by the difference between the actual number of single-play buyers, and the lower number

that would be predicted if there was no diminishing marginal utility.

Since we assume that βi has an exponential distribution, we expect fewer buyers for bundles

with successively more plays. But this pattern is not evident in the data. Table 3 shows that

the number of 2-play and 3-play buyers is lower than the number of 5-play and 8-play buyers.

Some of this may be explained by the fact that a per-play discount is offered for 5- and 8-play

bundles, but not for 2-play bundles, and a discount is offered for only one specific 3-play bundle.

However, there is also tension between the covariances implied by the choices of the pick-five

buyers, and the fairly large number of 8-play subscribers that suggest high positive covariances
30Ordinarily the difference between predicted and actual outcomes would be explained by an error term in the

demand model which has not been integrated out.
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for all plays. We explain these aspects of the data by the incorporating heterogeneity in price

sensitivity. Consumers with low price sensitivity tend to buy bundles with more plays. In this

way, we are able to identify the variance of the distribution of price sensitivity: σα.

A final comment on the flexibility of the model. Notice from Table 2 that the rank-ordering of

play popularity is different for the single-ticket buyers than it is for subscribers (which is driven

by the tastes of pick-five buyers because full season buyers attend all plays). Our specification can

explain this difference in the following way. The mean quality terms, µv, explain the relative

popularity of plays among the single-ticket buyers. The covariance terms in Σv explain the

popularity of certain pairings by the pick-five buyers, which also helps to explain differences in

the popularity of plays that is contrary to the ranking by the single-ticket buyers.

4.4 Results

4.5 Counterfactual Pricing Experiments

Given our estimates of the demand system, we can calculate the optimal prices and revenues

under various counterfactual pricing regimes. Table 5 shows the outcomes.

5 Conclusion
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Table 1. Simulation results for various distributions of consumer tastes

πQD/πCP πQD/πMB

K min median max min median max
Exponential (1) 2 1.00 1.11 1.16 0.97 1.00 1.00

3 1.00 1.19 1.26 0.96 1.00 1.00
4 1.00 1.26 1.33
5 1.09 1.31 1.38

Extreme Value (2) 2 1.04 1.07 1.09 0.98 0.99 1.00
3 1.08 1.12 1.15 0.98 1.00 1.00
4 1.12 1.15 1.18
5 1.15 1.18 1.21

Uniform (3) 2 0.99 1.04 1.12 0.94 0.97 1.00
3 0.99 1.11 1.17 0.94 0.98 1.00
4 1.00 1.16 1.23
5 1.02 1.20 1.26

Normal (4) 2 0.99 1.03 1.09 0.96 1.00 1.00
3 1.01 1.07 1.14 0.98 1.00 1.00
4 1.04 1.10 1.20
5 1.06 1.13 1.22

Normal (5) 2 0.99 1.03 1.10 0.98 1.00 1.00
3 1.00 1.05 1.10 0.98 0.99 1.00
4 1.02 1.08 1.16
5 1.03 1.10 1.18

Normal (6) 2 0.74 1.06 1.11 0.74 0.99 1.00
3 0.88 1.11 1.17 0.90 0.99 1.00
4 0.98 1.15 1.22
5 1.02 1.19 1.26

Ratios of optimal QD profits to CP and MB profits, respectively. Each row reports the minimum, median, and

maximum value from 1,000 simulations. The details of the preference distributions are as follows: (1) Consumers’

valuations for the products are independent exponential random variables, with product means drawn randomly

from U[0,1]. (2) Consumers’ valuations are independent extreme value random variables, with means drawn

randomly from U[1,5] and scale parameter equal to 1 (i.e., standard deviation = π/
√

6). (3) Valuations are

independent uniform random variables on the interval [0, ak], with the ak’s drawn randomly from U[0,10]. (4)

Valuations are independent normal random variables, with means drawn randomly from U[-1,1] and variances

set to 1. (5) Same as (4), but the valuations are positively correlated across products (ρ = 0.5 for each pair of

products). (6) Valuations are independent normal random variables, with means drawn randomly from U[0,2]

and variances drawn randomly from U[0,2].
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Table 2. Summary of ticket sales for 8 plays

Number of Average Ticket sales Ticket sales

Play Type Performances Attendance (subscription) (non-subscription)

A Little Night Music Musical 30 327.63 8,001 1,828

All My Sons Drama 33 263.88 7,817 891

Bat Boy Musical 30 297.63 7,793 1,136

Memphis Musical 30 384.70 7,968 3,573

My Antonia Drama 26 348.69 7,946 1,120

Nickel and Dimed Drama 26 380.42 7,757 2,134

Proof Drama 25 357.68 7,830 1,112

The Fourth Wall Comedy 29 348.86 8,401 1,716

Total 229 336.34 63,513 13,510

Three plays (Bat Boy, All My Sons, and The Fourth Wall) were performed at the Lucie Stern Theatre in Palo

Alto (capacity=428). The remaining five were performed at the Mountain View Center for the Performing Arts

(capacity=589).
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Table 3. Sales by purchase option

Purchase option Price per play ($) Number of consumers

Non-subscription:

1 play 40.80 8,131

2 plays 40.80 1,409

3 plays 40.80 555

4 plays 40.80 224

Subscription:

3-play bundle 36.20 245

5-play pick 37.00 2,794

8-play bundle 34.55 6,101

The 3-play subscription bundle was for the specific three plays performed at the (smaller) Lucie Stern Theatre

in Palo Alto, which is why the per-play price is lower than the 5-play bundle. Consumers purchasing the 5-play

subscription could combine any 5 plays of their choice.

23



Table 4. Correlation of tastes for pick-5 bundles

(1) (2) (3) (4) (5) (6) (7) (8)

(1) A Little Night Music .000

(2) All My Sons -.026 .000

(3) Bat Boy .067 -.233 .000

(4) Memphis .072 -.081 .257 .000

(5) My Antonia .177 .067 -.086 -.037 .000

(6) Nickel and Dimed -.160 -.009 -.013 -.039 .001 .000

(7) Proof -.066 .210 -.030 -.057 -.094 .008 .000

(8) The Fourth Wall -.038 .034 .003 -.117 -.007 .196 .008 .000

This is the difference between the observed correlation matrix and the correlation matrix that would be expected

if plays were chosen independently (i.e., no correlation in tastes). It is constructed for the 8,005 purchasers of the

flexible 5-play subscription.
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Estimates
=========

Play means (mu_v):

0.173 0.018 0.039 0.447 0.061 0.104 -0.083 0.197

Covariance (Sigma_v):

1.000
0.022 1.000
-0.020 -0.100 1.000
-0.050 -0.050 -0.014 1.000
0.125 0.069 -0.007 -0.028 1.000
-0.006 -0.025 0.016 -0.000 0.032 1.000
0.045 0.072 -0.006 -0.073 0.089 0.084 1.000
0.030 0.036 0.162 -0.003 0.090 0.190 0.217 1.000

Log Price sensitivity (alpha)

1.936 (mean)
0.160 (variance)

Diminishing returns parameter (beta)

0.606

Fit statistics:
===============

Play1 Play2 Play3 Play4 Play5 Play6 Play7 Play8
[Overall sales]
Actual shares .128 .113 .116 .150 .118 .128 .116 .131
Predicted shares .125 .117 .120 .147 .120 .125 .112 .135

[Pick-5 sales]
Actual shares .136 .105 .104 .134 .132 .119 .124 .147
Predicted shares .125 .107 .112 .137 .125 .129 .114 .150

[Individual sales]
Actual shares .131 .109 .089 .274 .094 .130 .082 .092
Predicted shares .133 .102 .094 .298 .090 .116 .060 .108
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Table 5. Counterfactual pricing

UP PB TW CP QD

p1 15.50 18.81 15.55 19.30

p2 13.79 16.95

p3 14.38 14.77 14.88

p4 15.56 13.07

p5 11.13 18.53 11.47

p6 15.60 10.08

p7 13.99 8.85

p8 5.71 7.73 15.59 7.77

Revenue 17.80 18.10 18.96 17.97 19.88

CS 13.57 14.00 12.92 13.64 13.87

For UP, p1 is the optimal uniform price for a single play. For PB, p8 is the optimal per-play price for the bundle

of all eight plays. TW is the pricing scheme currently employed by the theater company: p1 is the single-play

price, p3 is the per-play price for a specific bundle of three plays, p5 is the per-play price for any combination of

five plays, and p8 is the per-play price if you buy all eight. For CP, p1-p8 are the prices for the eight individual

plays, and for QD, p1-p8 are the per-play prices for any bundle containing the corresponding number of plays. The

revenue and consumer surplus numbers are normalized by the market size—i.e., we report revenue per consumer.
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Figure 3.
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Figure 4.
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